Sums of Averages of GCD-Sum Functions II

نویسندگان

چکیده

Abstract Let $$ \gcd (k,j) gcd ( k , j ) denote the greatest common divisor of integers k and j , let r be any fixed positive integer. Define $$\begin{aligned} M_r(x; f) := \sum _{k\le x}\frac{1}{k^{r+1}}\sum _{j=1}^{k}j^{r}f(\gcd (j,k)) \end{aligned}$$ M r x ; f : = ∑ ≤ 1 + for large real number $$x\ge 5$$ ≥ 5 where f is arithmetical function. $$\phi ϕ $$\psi ψ Euler totient Dedekind function, respectively. In this paper, we refine asymptotic expansions $$M_r(x; \mathrm{id})$$ id $$M_r(x;{\phi })$$ $$M_r(x;{\psi . Furthermore, under Riemann Hypothesis simplicity zeros zeta-function, establish formula $$M_r(x;\mathrm{id})$$ $$x>5$$ > satisfying $$x=[x]+\frac{1}{2}$$ [ ] 2

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Gcd-Sum Functions

We investigate weighted gcd-sum functions, including the alternating gcd-sum function and those having as weights the binomial coefficients and values of the Gamma function. We also consider the alternating lcm-sum function.

متن کامل

A Survey of Gcd-Sum Functions

We survey properties of the gcd-sum function and of its analogs. As new results, we establish asymptotic formulae with remainder terms for the quadratic moment and the reciprocal of the gcd-sum function and for the function defined by the harmonic mean of the gcd’s.

متن کامل

Mean Values of Generalized gcd-sum and lcm-sum Functions

We consider a generalization of the gcd-sum function, and obtain its average order with a quasi-optimal error term. We also study the reciprocals of the gcd-sum and lcm-sum functions.

متن کامل

Metric discrepancy theory, functions of bounded variation and GCD sums

Let f(x) be a 1-periodic function of bounded variation having mean zero, and let (nk)k≥1 be an increasing sequence of positive integers. Then a result of Baker implies the upper bound ∣∣∣∑Nk=1 f(nkx)∣∣∣ = O (√N(logN)3/2+ε) for almost all x ∈ (0, 1) in the sense of the Lebesgue measure. We show that the asymptotic order of ∣∣∣∑Nk=1 f(nkx)∣∣∣ is closely connected with certain number-theoretic pro...

متن کامل

Gcd Sums from Poisson Integrals and Systems of Dilated Functions

(nknl) are established, where (nk)1≤k≤N is any sequence of distinct positive integers and 0 < α ≤ 1; the estimate for α = 1/2 solves in particular a problem of Dyer and Harman from 1986, and the estimates are optimal except possibly for α = 1/2. The method of proof is based on identifying the sum as a certain Poisson integral on a polydisc; as a byproduct, estimates for the largest eigenvalues ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Mathematics

سال: 2021

ISSN: ['1420-9012', '1422-6383']

DOI: https://doi.org/10.1007/s00025-021-01357-x